3.265 \(\int \frac {(e+f x) \cos ^3(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=91 \[ \frac {f \cos (c+d x)}{a d^2}-\frac {f \sin (c+d x) \cos (c+d x)}{4 a d^2}-\frac {(e+f x) \sin ^2(c+d x)}{2 a d}+\frac {(e+f x) \sin (c+d x)}{a d}+\frac {f x}{4 a d} \]

[Out]

1/4*f*x/a/d+f*cos(d*x+c)/a/d^2+(f*x+e)*sin(d*x+c)/a/d-1/4*f*cos(d*x+c)*sin(d*x+c)/a/d^2-1/2*(f*x+e)*sin(d*x+c)
^2/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {4523, 3296, 2638, 4404, 2635, 8} \[ \frac {f \cos (c+d x)}{a d^2}-\frac {f \sin (c+d x) \cos (c+d x)}{4 a d^2}-\frac {(e+f x) \sin ^2(c+d x)}{2 a d}+\frac {(e+f x) \sin (c+d x)}{a d}+\frac {f x}{4 a d} \]

Antiderivative was successfully verified.

[In]

Int[((e + f*x)*Cos[c + d*x]^3)/(a + a*Sin[c + d*x]),x]

[Out]

(f*x)/(4*a*d) + (f*Cos[c + d*x])/(a*d^2) + ((e + f*x)*Sin[c + d*x])/(a*d) - (f*Cos[c + d*x]*Sin[c + d*x])/(4*a
*d^2) - ((e + f*x)*Sin[c + d*x]^2)/(2*a*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 4404

Int[Cos[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Simp[((c +
d*x)^m*Sin[a + b*x]^(n + 1))/(b*(n + 1)), x] - Dist[(d*m)/(b*(n + 1)), Int[(c + d*x)^(m - 1)*Sin[a + b*x]^(n +
 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]

Rule 4523

Int[(Cos[(c_.) + (d_.)*(x_)]^(n_)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol
] :> Dist[1/a, Int[(e + f*x)^m*Cos[c + d*x]^(n - 2), x], x] - Dist[1/b, Int[(e + f*x)^m*Cos[c + d*x]^(n - 2)*S
in[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 1] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {(e+f x) \cos ^3(c+d x)}{a+a \sin (c+d x)} \, dx &=\frac {\int (e+f x) \cos (c+d x) \, dx}{a}-\frac {\int (e+f x) \cos (c+d x) \sin (c+d x) \, dx}{a}\\ &=\frac {(e+f x) \sin (c+d x)}{a d}-\frac {(e+f x) \sin ^2(c+d x)}{2 a d}+\frac {f \int \sin ^2(c+d x) \, dx}{2 a d}-\frac {f \int \sin (c+d x) \, dx}{a d}\\ &=\frac {f \cos (c+d x)}{a d^2}+\frac {(e+f x) \sin (c+d x)}{a d}-\frac {f \cos (c+d x) \sin (c+d x)}{4 a d^2}-\frac {(e+f x) \sin ^2(c+d x)}{2 a d}+\frac {f \int 1 \, dx}{4 a d}\\ &=\frac {f x}{4 a d}+\frac {f \cos (c+d x)}{a d^2}+\frac {(e+f x) \sin (c+d x)}{a d}-\frac {f \cos (c+d x) \sin (c+d x)}{4 a d^2}-\frac {(e+f x) \sin ^2(c+d x)}{2 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.95, size = 52, normalized size = 0.57 \[ \frac {d (e+f x) (4 \sin (c+d x)+\cos (2 (c+d x)))-f (\sin (c+d x)-4) \cos (c+d x)}{4 a d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[((e + f*x)*Cos[c + d*x]^3)/(a + a*Sin[c + d*x]),x]

[Out]

(-(f*Cos[c + d*x]*(-4 + Sin[c + d*x])) + d*(e + f*x)*(Cos[2*(c + d*x)] + 4*Sin[c + d*x]))/(4*a*d^2)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 67, normalized size = 0.74 \[ -\frac {d f x - 2 \, {\left (d f x + d e\right )} \cos \left (d x + c\right )^{2} - 4 \, f \cos \left (d x + c\right ) - {\left (4 \, d f x + 4 \, d e - f \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, a d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)*cos(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/4*(d*f*x - 2*(d*f*x + d*e)*cos(d*x + c)^2 - 4*f*cos(d*x + c) - (4*d*f*x + 4*d*e - f*cos(d*x + c))*sin(d*x +
 c))/(a*d^2)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)*cos(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.11, size = 114, normalized size = 1.25 \[ -\frac {f \left (-\frac {\left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{2}+\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{4}+\frac {d x}{4}+\frac {c}{4}\right )+\frac {c f \left (\cos ^{2}\left (d x +c \right )\right )}{2}-\frac {\left (\cos ^{2}\left (d x +c \right )\right ) d e}{2}-f \left (\cos \left (d x +c \right )+\left (d x +c \right ) \sin \left (d x +c \right )\right )+\sin \left (d x +c \right ) c f -\sin \left (d x +c \right ) d e}{d^{2} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)*cos(d*x+c)^3/(a+a*sin(d*x+c)),x)

[Out]

-1/d^2/a*(f*(-1/2*(d*x+c)*cos(d*x+c)^2+1/4*cos(d*x+c)*sin(d*x+c)+1/4*d*x+1/4*c)+1/2*c*f*cos(d*x+c)^2-1/2*cos(d
*x+c)^2*d*e-f*(cos(d*x+c)+(d*x+c)*sin(d*x+c))+sin(d*x+c)*c*f-sin(d*x+c)*d*e)

________________________________________________________________________________________

maxima [A]  time = 0.66, size = 114, normalized size = 1.25 \[ -\frac {\frac {4 \, {\left (\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right )\right )} e}{a} - \frac {4 \, {\left (\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right )\right )} c f}{a d} - \frac {{\left (2 \, {\left (d x + c\right )} \cos \left (2 \, d x + 2 \, c\right ) + 8 \, {\left (d x + c\right )} \sin \left (d x + c\right ) + 8 \, \cos \left (d x + c\right ) - \sin \left (2 \, d x + 2 \, c\right )\right )} f}{a d}}{8 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)*cos(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/8*(4*(sin(d*x + c)^2 - 2*sin(d*x + c))*e/a - 4*(sin(d*x + c)^2 - 2*sin(d*x + c))*c*f/(a*d) - (2*(d*x + c)*c
os(2*d*x + 2*c) + 8*(d*x + c)*sin(d*x + c) + 8*cos(d*x + c) - sin(2*d*x + 2*c))*f/(a*d))/d

________________________________________________________________________________________

mupad [B]  time = 3.04, size = 84, normalized size = 0.92 \[ -\frac {\frac {f\,\sin \left (2\,c+2\,d\,x\right )}{2}+8\,f\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-4\,d\,e\,\sin \left (c+d\,x\right )+2\,d\,e\,{\sin \left (c+d\,x\right )}^2-4\,d\,f\,x\,\sin \left (c+d\,x\right )+d\,f\,x\,\left (2\,{\sin \left (c+d\,x\right )}^2-1\right )}{4\,a\,d^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^3*(e + f*x))/(a + a*sin(c + d*x)),x)

[Out]

-((f*sin(2*c + 2*d*x))/2 + 8*f*sin(c/2 + (d*x)/2)^2 - 4*d*e*sin(c + d*x) + 2*d*e*sin(c + d*x)^2 - 4*d*f*x*sin(
c + d*x) + d*f*x*(2*sin(c + d*x)^2 - 1))/(4*a*d^2)

________________________________________________________________________________________

sympy [A]  time = 7.99, size = 724, normalized size = 7.96 \[ \begin {cases} \frac {8 d e \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} - \frac {8 d e \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} + \frac {8 d e \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} + \frac {d f x \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} + \frac {8 d f x \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} - \frac {6 d f x \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} + \frac {8 d f x \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} + \frac {d f x}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} + \frac {2 f \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} + \frac {8 f \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} - \frac {2 f \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} + \frac {8 f}{4 a d^{2} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 8 a d^{2} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d^{2}} & \text {for}\: d \neq 0 \\\frac {\left (e x + \frac {f x^{2}}{2}\right ) \cos ^{3}{\relax (c )}}{a \sin {\relax (c )} + a} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)*cos(d*x+c)**3/(a+a*sin(d*x+c)),x)

[Out]

Piecewise((8*d*e*tan(c/2 + d*x/2)**3/(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2)
- 8*d*e*tan(c/2 + d*x/2)**2/(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2) + 8*d*e*t
an(c/2 + d*x/2)/(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2) + d*f*x*tan(c/2 + d*x
/2)**4/(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2) + 8*d*f*x*tan(c/2 + d*x/2)**3/
(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2) - 6*d*f*x*tan(c/2 + d*x/2)**2/(4*a*d*
*2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2) + 8*d*f*x*tan(c/2 + d*x/2)/(4*a*d**2*tan(c/2
 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2) + d*f*x/(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c
/2 + d*x/2)**2 + 4*a*d**2) + 2*f*tan(c/2 + d*x/2)**3/(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)
**2 + 4*a*d**2) + 8*f*tan(c/2 + d*x/2)**2/(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d
**2) - 2*f*tan(c/2 + d*x/2)/(4*a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2) + 8*f/(4*
a*d**2*tan(c/2 + d*x/2)**4 + 8*a*d**2*tan(c/2 + d*x/2)**2 + 4*a*d**2), Ne(d, 0)), ((e*x + f*x**2/2)*cos(c)**3/
(a*sin(c) + a), True))

________________________________________________________________________________________